370 research outputs found

    Improving medical image perception by hierarchical clustering based segmentation

    Get PDF
    It has been well documented that radiologists' performance is not perfect: they make both false positive and false negative decisions. For example, approximately thirty percent of early lung cancer is missed on chest radiographs when the evidence is clearly visible in retrospect. Currently computer-aided detection (CAD) uses software, designed to reduce errors by drawing radiologists' attention to possible abnormalities by placing prompts on images. Alberdi et al examined the effects of CAD prompts on performance, comparing the negative effect of no prompt on a cancer case with prompts on a normal case. They showed that no prompt on a cancer case can have a detrimental effect on reader sensitivity and that the reader performs worse than if the reader was not using CAD. This became particularly apparent when difficult cases were being read. They suggested that the readers were using CAD as a decision making tool instead of a prompting aid. They conclude that "incorrect CAD can have a detrimental effect on human decisions". The goal of this paper is to explore the possibility of using hierarchical clustering based segmentation (HSC), as a perceptual aid, to improve the performance of the reader

    Improving medical image perception by hierarchical clustering based segmentation

    Get PDF
    It has been well documented that radiologists' performance is not perfect: they make both false positive and false negative decisions. For example, approximately thirty percent of early lung cancer is missed on chest radiographs when the evidence is clearly visible in retrospect [1]. Currently Computer-Aided Detection (CAD) uses software, designed to reduce errors by drawing radiologists' attention to possible abnormalities by placing prompts on images. Alberdi et al examined the effects of CAD prompts on performance, comparing the negative effect of no prompt on a cancer case with prompts on a normal case. They showed that no prompt on a cancer case can have a detrimental effect on reader sensitivity and that the reader performs worse than if the reader was not using CAD. This became particularly apparent when difficult cases were being read. They suggested that the readers were using CAD as a decision making tool instead of a prompting aid. They conclude that "incorrect CAD can have a detrimental effect on human decisions" [2]. The goal of this paper is to explore the possibility of using Hierarchical Clustering based Segmentation (HCS) [3], as a perceptual aid, to improve the performance of the reader

    Morphology of supported polymer electrolyte ultra-thin films: a numerical study

    Full text link
    Morphology of polymer electrolytes membranes (PEM), e.g., Nafion, inside PEM fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films has not been sufficiently explored yet. Here, we report about Molecular Dynamics simulation investigation of the substrate effects on the ionomer ultra-thin film morphology at different hydration levels. We use a mean-field-like model we introduced in previous publications for the interaction of the hydrated Nafion ionomer with a substrate, characterized by a tunable degree of hydrophilicity. We show that the affinity of the substrate with water plays a crucial role in the molecular rearrangement of the ionomer film, resulting in completely different morphologies. Detailed structural description in different regions of the film shows evidences of strongly heterogeneous behavior. A qualitative discussion of the implications of our observations on the PEMFC catalyst layer performance is finally proposed

    PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    Full text link
    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched-polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pHs, at elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultra-long blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery

    Enhancement of Sm3+emission by SnO2nanocrystals in the silica matrix

    Get PDF
    Silica xerogels containing Sm3+ions and SnO2nanocrystals were prepared in a sol–gel process. The image of transmission electron microscopy (TEM) shows that the SnO2nanocrystals are dispersed in the silica matrix. The X-ray diffraction (XRD) of the sample confirms the tetragonal phase of SnO2. The xerogels containing SnO2nanocrystals and Sm3+ions display the characteristic emission of Sm3+ions (4G5/2 → 6HJ(J = 5/2, 7/2, 9/2)) at the excitation of 335 nm which energy corresponds to the energy gap of the SnO2nanocrystals, while no emission of Sm3+ions can be observed for the samples containing Sm3+ions. The enhancement of the Sm3+emission is probably due to the energy transfer from SnO2nanocrystals to Sm3+ions

    RAPID: Resource of Asian Primary Immunodeficiency Diseases

    Get PDF
    Availability of a freely accessible, dynamic and integrated database for primary immunodeficiency diseases (PID) is important both for researchers as well as clinicians. To build a PID informational platform and also as a part of action to initiate a network of PID research in Asia, we have constructed a web-based compendium of molecular alterations in PID, named Resource of Asian Primary Immunodeficiency Diseases (RAPID), which is available as a worldwide web resource at http://rapid.rcai.riken.jp/. It hosts information on sequence variations and expression at the mRNA and protein levels of all genes reported to be involved in PID patients. The main objective of this database is to provide detailed information pertaining to genes and proteins involved in primary immunodeficiency diseases along with other relevant information about protein–protein interactions, mouse studies and microarray gene-expression profiles in various organs and cells of the immune system. RAPID also hosts a tool, mutation viewer, to predict deleterious and novel mutations and also to obtain mutation-based 3D structures for PID genes. Thus, information contained in this database should help physicians and other biomedical investigators to further investigate the role of these molecules in PID
    corecore